Process Data in SmartPlant Instrumentation

Fluor's SmartPlant Implementation Initiative

© 2013 Fluor. All Rights Reserved.

By: John Dressel

Process Department Issues

Identifying Process Customer

- The Process Data is not a project deliverable to the Client on most projects
- The Primary Process Customer is Control Systems for the Sizing and Calibration of the Inline Instrument devices
- Mechanical and Piping also use the Process Design Conditions for equipment and line sizing and material spec
- Additional Process Hours for SPI loading
 - Process develops initial Process Data on spreadsheets using the stream data and material balance
 - Additional time to enter this data into SPI is not normally estimated in the Process Home Office Man Hour Estimate
 - It is the responsibility of Control Systems to make the SPI data loading as efficient as possible for Process

Process Department Issues

Change Control in SmartPlant Instrumentation

- Because of the Critical and Dynamic nature of process data it is important that Change Management Procedures be in place on every project.
- The Process Engineer is the Owner of the Process Data in SmartPlant Instrumentation
- Process Training for SmartPlant Instrumentation
 - It is the responsibility of the Control Systems SmartPlant Instrumentation administrator to Train the Process Engineers in the use of the Process Module
 - Use the SPI Process Module tutorial provided by Intergraph
 - Supplemental Training of Browser and Save As functions

Current Process Data Work Practices

Hard copied process datasheets

- Process issues paper copies of Process Datasheets
- Requires Control Systems to manually load Process data into SPI and requires some interpretation by SPI users.

Excel Process datasheets

- Process can issue Excel Spreadsheet Datasheets
- Requires Control Systems to manually load Process data into SPI but has some Cut and Paste capability
- Process Loads Process data into another tool for import into SPI
 - Complex method that brakes chain of data ownership
- Process Loads Process data directly into SPI
 - Preferred method but requires SPI trained Process users

CASE 1 Service Feed from V-8 Location **SPI Process Data Module** Eluid state: Liquid Line number: Line size: Fluid phase Single phase Eluid name source User-defined Line schedule Lean Feed Fluid name PROPERTIES Report flags Specific Gravity Density ▼ Molecular Mass Maximum @Normal Units /olumetric flow ▼ @flow ▼ m³/h Upstream pressure: 💌 gage • emperature: Tag data is the primary ^riscosity: 0.936 1.12 elocity m/s • ¥ ensity: 890 ka/m process loading method. 0.891 Specific gravity 0.891 0.891 Compressibility pecific heats rati General Instrument area ▼ gage ▼ gage apour pressure • • itical pressure olecular mass Process Properties area ADDITIONAL PROPERTIES esian pressure minimum: 💌 gage 🔍 Corrosive No 💌 Additional Properties No 💌 gage -Erosive: esian pressure maximum: har • Toxic: No esign temperature minimum esign temperature maximum: Colored Transparent • intrained gas Base conditions area -Anale of repose Build-up tendency To: 36 m³/h 💌 @flow 💌 Required range From: 0 imits on press.drop across flowmeter: mmH2O 4°C 💌 Alarm conditions area BASE CONDITIONS Pressure: API 2540 Standards absolute Density: ka/m³ lbar. emperature Specific gravity Compressibility User Defined Fields ALARM Alarm Trip Process Notes Area .ow-Low-Low: Engineering units: ▼ m³/h ▼ @flow ▼ ow-Low liah -liah-Hiah: liah-Hiah-Hiah Different Process Functions API 2540 STANDARD Density at reference temperature -**Require Different Process** Specific gravity at reference temperature: *API settings for: minimum/normal/maximum erence temperature: Data USER DEFINED FIELD FLUOR

- Handles multiple Cases
- Fluid properties lookups
- Data entered by Tag or Line
- Unit of Measure conversion
- Copy data from other Tags
- Additional Properties
- Base Conditions
- Alarm / Trip Settings
- User Defined Fields
- Workflow control
- Process datasheets with Revisions
 FLUOR_®

Case name:			GENERAL			
	Case 1					
Tag number:	101-FE -100					
Service:	Feed from V-8		Location	n.	Line	
Fluid state:	Liquid		Line nur		4"-P-1501-11H	
Fluid state. Fluid phase:	Single phase		Line siz		4 -P-1501-11H	
Fluid name:	Lean Feed		Line sci	redule:	80	
			PROPERTIES			
	@Minimum	@Normal	@Maximum	Units		
Volumetric flow:	25	30	32	m³/h@flow		
Upstream pressure:	12	13	14	bar-g		
Temperature:	150	150	150	°C		
Viscosity:	0.1	0.1	0.1	cP		
Velocity:	0.936	1.12	1.2	m/s		
Density:	890	890	890	kg/m³		
Specific gravity:	0.891	0.891	0.891	Population of the second se		
Compressibility:	0.031	0.051	0.001			
	0.9	0.9	0.9	bor a		
Vapour pressure:		0.9	0.9	bar-q		
Critical pressure:	1200			bar-q		
		ADDI	IONAL PROPER	TIES		
Design pressure min:		bar-q			Corrosive:	No
Design pressure max:	50	bar-g			Erosive:	NO
		°C			Toxic:	NO
Design temperature mi		°C				NO
Design temperature m	ax. 250				Colored:	
Entrained gas:		%			Transparent:	
Required range:	From: 0	To: 35		n³/h@flow	Build-up tendency:	
Limits on press.drop a	across flowmeter:	mmH2	20 4°C		Angle of repose:	
			c	ompressibility:		
	Alarm	qhT	ALARM			
Low-Low-Low:				Engineering units:	m³/h@flow	
Low:						
Low: High:	-					
Low: High: High-High:	•					
Low: High: High-High: High-High-High:						
Low: High: High-High: High-High-High:						
Low: High: High-High: High-High-High:						
Low: High: High-High: High-High-High:		API	2540 STANDAR	D		
Low: High: High-High: High-High-High:		API	2540 STANDAR	D		
Low: High: High-High: High-High-High:		API	2540 STANDAR	D		
Low: High: High-High: High-High-High:		API	2540 STANDAR	D		
Low: High: High-High: High-High-High:		API	2540 STANDAR	D		
Low: High: High-High: High-High-High:		API	2540 STANDAR	D		
Low: High: High-High: High-High-High:						
Low: High: High-High: High-High-High:			2540 STANDAR			
Low: High: High-High: High-High-High:						
Low: High: High-High: High-High-High:						
Low: High: High-High: High-High-High:						
Low: High: High-High: High-High-High:			ER DEFINED FIEL			
Low: High: High-High: High-High-High:						
Low: High: High-High: High-High-High:			ER DEFINED FIEL			
Low: High: High-High: High-High-High:			ER DEFINED FIEL	D		
Low: High: High-High: High-High-High:			ER DEFINED FEL	D FLOW		GRAP
Low: High: High-High: High-High-High:				D FLOW ICESS DATA SHEE		
Low-Low Low: High: High-High: Hig			ER DEFINED FEL	D FLOW ICESS DATA SHEE		

Process Data Module

PROCESS WORK FLOW

Status	Description	Set / Changed by		
Process Data not Required	Tags that do not require process data and therefore are not available to the process engineering group	Set by Instrument Engineers Changed by Instrument Engineers		
Process Data Required	Tags available for process data entry by the process engineering group (in the Process Data module or Browser).	Set by Instrument Engineers Changed by Process Engineers		
Lock out from Instrument	Tags marked for editing by the process engineering group and not available to the instrument group.	Set by Process Engineers Changed by Process Engineers		
Release to Instrument	Tags available to the instrument engineering group following release from the process group.	Set by Process Engineers Changed by Instrument Engineers		
Lock out from Process	Tags not available to the process engineering group.	Set by Instrument Engineers Changed by Instrument Engineers		

Process Data Module

Data Required from Process Department

- In-lines; Process Data for inline devices (control valves and flow elements) and analyzers are furnished by Process. Depending on the project scope, Relief Valve Process Data may be required to be furnished to Control Systems by Process Engineering.
- Data NOT Required from Process Department
 - Off-lines; Data for off-line instruments (transmitters, temperature elements, pressure elements, etc.) is collected by Control Systems from the inline device data, line list, mechanical equipment data sheets and other sources. On a work share project, it may be possible to have personnel in another office, such as a GEC, enter some or all of this data. The work process for doing so will be the responsibility of Control Systems.
 - Piping In-lines; For Thermowell velocity calculations, Control Systems will utilize the inline device data, line list and other sources for applicable installations. For those Thermowells where flow information is not available from other sources, Process will be consulted.

SPI Line Data Table

 Line Data Table maintains the piping line data as required for material and sizing

Select Line Line type: IPROCESS	💌 💷 🗖 Show all lin	ne types			X
Eind line:					
Line Number	P&ID Number	Stream Name	PD Exists	Pipe Standard	Pipe Ma
1"-FL-5001-15			Yes	ANSI	304 S.S
2"-C-1003-3C			Yes	ANSI	304 S.S
3"-FO-1212-4C			Yes	ANSI	PLAIN C
3"-FO-1213-4C			Yes	ANSI	PLAIN C
4"-P-1501-11H			Yes	ANSI	PLAIN C
4"-P-1502-11H			Yes	ANSI	PLAIN C
4"-P-1503-11H			No	ANSI	PLAIN C
FDFDD			No	ANSI	PLAIN C
•					Þ
	OK	Cancel <u>P</u> ropertie	<u>N</u> ew	Change <u>T</u> ype	Help

SPI Line Properties

 Line Properties dialog box allows the editing of line materials, Size, Schedule and dimensions

Select Line	Line Properties	X
Line type: PROCESS Find line:	Line number: 1"-FL-5001-15	Pip <u>e</u> standard: ANSI
Line Number	P&ID:	Line size: 1 in
1"-FL-5001-15 2"-C-1003-3C 3"-FO-1212-4C 3"-FO-1213-4C	<u>S</u> tream name:	Internal diameter: 0.957
4"-P-1501-11H 4"-P-1502-11H 4"-P-1503-11H FDFDD	Pipe <u>m</u> aterial: 304 S.S.	Line sched <u>u</u> le: 80S
	Pipe spe <u>c</u> :	Wall <u>t</u> hickness: 0.179
	OK Cancel Pi	pe Data <u>H</u> elp

SPI Pipe Data lookup Table

 The Pipe Data Lookup Table will allow selection of the proper Pipe Schedule for a given size from the line class specification report.

Select Line	Line Properties	Pipe Data				
PROCESS	Line number:	Nominal Size (inch)	Pipe Schedule	Internal Diameter (inch)	Wall Thickness (inch)	
nd line:		1	80S	0.9570	0.1790	
	<u>P</u> &ID:	1	40S	1.0490	0.1330	1
e Number FL-5001-15		1	105	1.0970	0.1090	
C-1003-3C	<u>S</u> tream name:	1	5S	1.1850	0.0650	
FO-1212-4C FO-1213-4C	-	1 1/4	805	1.2780	0.1910	
P-1501-11H	Pipe <u>m</u> aterial:	1 1/4	40S	1.3800	0.1400	
P-1502-11H P-1503-11H	304 S.S.	1 1/4	10S	1.4420	0.1090	
FDD	Pipe spe <u>c</u> :	1 1/4	55	1.5300	0.0650],
1		l <u>F</u> ind nominal size:		ОК	Cancel <u>H</u> elp	_

SPI Process Data Module

Line data automatically placed in Process Data Module

					GENE	PAL				
elect Line	Line Case:									-
Line type:	Service:		Feed from V-8			Location:	Line	э		
PROCESS	Lin Fluid state:		Liquid			Line number:	4"-	P-1501-11H		•
Find line:	1 ¹¹ Fluid phase:		Single phase			Line size:	4		jn	
	E& Fluid name so	urce:	Database			Line schedule:	80			
Line Number	Fluid name:									
1"-FL-5001-15				pros		11.0970		p		
2"-C-1003-3C	<u>S</u> tream name:	1		5S		1.1850		0.0650		
3"-FO-1212-4C 3"-FO-1213-4C	-	1 1/4		80S		1.2780		0.1910		
4"-P-1501-11H 4"-P-1502-11H	Pipe <u>m</u> aterial:	1 1/4		40S		1.3800		0.1400		
4"-P-1502-11H	304 S.S.	1 1/4		10S		1.4420		0.1090		
FDFDD	Pipe spe <u>c</u> :	1 1/4		5S		1.5300		0.0650		
	Fipe spe <u>c</u> .									•
•		Eind p	ominal size:							
			ominar Size.	_			ОК	Cancel	Help	
							UK I			

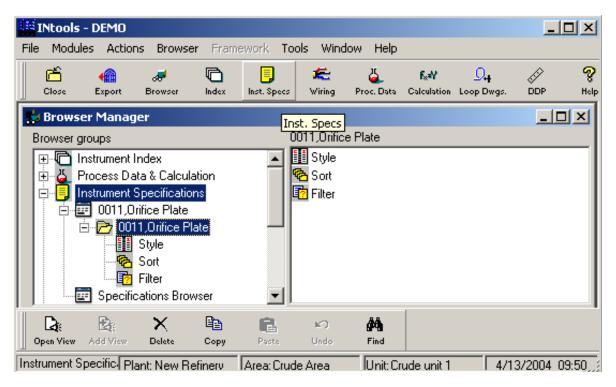
Process Engineers enter data directly into SPI for Calculations and Instrument Spec Sheets.

12	INtools - D	emo										
Fi	e Modules	Edit	Actions	Options	Framework	Tools	Window	Help				
	Close I	∢∰ Export	ري Browser	ndex 🕞] Inst. Specs	🗲 Wiring	4 Proc. Data	f_e¥Y Calculation	<mark></mark> Loop Dwgs.	DDP	% Help	
k	Flowmet	er Pro	cess Dal	ta - 101-F	E -100							
l	GENERAL											
	Case: Case 1											
	Service:		l I	eed from \	/-8			Locatio	n:	Lin		
	Fluid state:			Liquid				Line nu	mber:	4"	-P-150	
	Fluid phase:			Single pha:				Line siz	e:	4		
	Fluid name :	source:		User-defined Line schedule: 80								
	Fluid name:		ļL	ean Feed.								
								PERTIES			_	
	Report flags	:		, .	ific Gravity		Density		✓ Molec	ular Mass		
						Normal			Units			
	Volumetric f			25	30		32	m ³		▼ @flow		
	Upstream pi	ressure	:	12	13		14	ba	r _	▼ gage		
	<u> </u>											
	OB Instrument	Line	F Save	🗐 Report	Highlight	Add Case	Elete Case	2				
Re	ady		Plant	New Befin	eru Área: (Crude Ar	rea I	Init Crude (unit 1	4/13/20	04 10 12	

Process Engineers may enter fluid properties manually or select from internal database.

	GENE	ERAL				
Case:						•
Service:	Feed from V-8	Location:		Line		
Fluid state:	Liquid 💌	Line number:		4"-P-1501-11H		•
Fluid phase:	Single phase 🗾	Line size:		4	jin	
Fluid name source:	Database 💌	Line schedule:		80		
Fluid name:						-
	Fluid Name	Fluid Formula	Chemi			
	1,2-BUTADIENE	C4H6	1,2-BU	ITADIENE		
	1,2-DICHLOROETHANE	C2H4CL2	ETHA	NE 1,2-DICHLORO-		F
Report flags:	1,2-DIMETHYLBENZENE	C8H10	BENZ	ENE,1,2-DIMETHYL-		
	1,2-ETHANEDIOL	C2H6O2 1,2-E1		2-ETHANEDIOL		
						•

Process Engineers may select hydrocarbon properties from the internal API 2540 table.


	GEN	ERAL		
Case:				-
Service:	Feed from V-8	Location:	Line	
Fluid state:	Liquid 🗾	Line number:	4"-P-1501-11H	-
Fluid phase:	Single phase 🗾	Line size:	4	jn
Fluid name source:	API 2540 💌	Line schedule:	80	
Fluid name:				-
	Crude Oils and JP4 Jet Fuels, Kerosenes, Solvents Gasolines and Naphthenes Lubricating Oils Discel Oil, Mastire Oils, Fuel Oils			
Benort flags:	Diesel Oil, Heating Oils, Fuel Oils			

SmartPlant Browser Module

- All primary SmartPlant data tables are exposed for Browsing
- Allows users to create queries on Spec Sheets and Process Data
- Automatic Report and Export of query data from Browser

Process Data User Preferences

- Open Process Data from Browsers
- Tag Creation NOT allowed from Process Module
- No Custom Fields results in better Process Data Reports

Preferences	×
General Calulation General General Calubation General General Calubation General General General General Calubation General Generator G	General options ✓ Convert units of measure automatically ✓ Enable velocity auto recalculation ✓ Highlight required process data properties Browser view options Open process data sheet: Always Tag creation △ Allowed ④ Not allowed Process data report display options ○ Full-length custom fields ○ Short custom fields ④ No custom fields
ОК	Cancel Reset All Import Export Help

Instrument Spec Module

Instrument Specification

- Form for each Spec Type
- Edit Forms in SPI
- Drop Down Data Windows
- External Form Editor
- Multi-Item forms
- Multi-Sheet forms
- Revision control
- Show data from Index table
- Link directly to Process Data
- Export Specs to Excel or Intergraph External Editor

	1	Tag No.				101-EV -100					
	2	Service				Feed from V-B					
	3	Line No.				4°-P-1501-11H					
		Area Clas				Class 1, DM	sion	2, Groups C&			
GENERAL			emperature:		Min. Max.	5.2	_	Class 1, Divis	ion :		
1200000000			Sound Press.		BA	90			-32		
			Requirements		Mary and the second	ANSI N (sta			- 20		
		Available.	Air Supply Pre	In Land	Min. Max.	60	~~~~	psi-g	- 84		
	9	PowerFal	lure Position			Close					
	10										
PIPE			and Schedule		Inlet Outle			88	4*		-90
LINE		Fipe Mate				Carbon steel	D		- 32		
Line	13	Pipe insul				nú	20				
		Process P				Lean Feed					
		Upstream				Liquid					
	16	Differentia	Pressure .					bar			
	17					Units	1	意 Max. Flow	(Q N	one, Flow	@ Min. Flo
		Flow Rate	Kanan			Amhh	32	60 C	30	- 8	25
	19	Inlet Press				bar-g	14		13	3	12
PROCESS	20	Pressure I	Drop			bar	3		6		8
		Inlet Temp				*C	150		150		160
CONDITIONS			ity / Specific (cular Mass	kgim ³	890	1	890		890
			pressibility Fa	etor		18 - 1 8 - 1			1	3	0
	24	Inist Visco				d٩	0		0	3	0
	25		ific Heats Rat	ú .		Section 1			1.5	3	28
		Inlet Vapo	ur Pressure			bar-g	1		1	3	1
3	27	1				18					
CALCULATED		Flow Coel	Toient Cv			300	20		13		10
RESULTS		Traval				N				3	3
RESULTS			assure Level	aneres .	4.000p	dBA	65	and an	69	www.week	78
			Model	Fisher	EZ	12 00000			Model	By Mfr	By Mfr
		Body Type		Single Seat			57			3-15 psig	By Mfr
			Trim Size	2 in	By Mfr	8	58				a constraint of
		Rated Dv.		By Mfr	By Mfr	POSITIONER	59			=%	
			ec. & Rating	300 # RF				Bypass	Gauges	Yes	Yes
		Eody Mate		CS	2200		61		10	13	2.52
			pe Material	Integral	SS		62	02511 136		3	20
BOOY		Flow Direct		By Mfr		SUISUS !!	63		Model	16	36
AND	39	Flow Actic		By Mfr		SOLENOID	64			3	
TRM			Isolal, Valve	No	No	VALVE	65	When De-En	egr.Valve	6	
			No. of Ports	By Mfr	<u>i</u> 1	18	66			3	
		Trim Type		25	2.95	-			Model	18	310
		Rated Tra		24-2		Server and	68		Quantity	19	1
			Disk Material			SWITCHES	69			10	517
		Seat Mate		88		8	70	Switching Po	sition	3	
			Stern Material		SS		71				
		Gasket Ma	atorial 🔅	By Mfr		Same !!			Model	By Mfr.	By Mfr
	48	1000 C	managene St	Same	2002	ARSET	73			By Mfr	222.0
		MFR.	Model	Fisher	867	Second Second		Filter	Gauge	Yes	Yes
		Type	and a second	Diaphragm	635	-6-	75	111.40V - 34 - 34 - 34 - 34 - 34 - 34 - 34 - 3		16	100000000
ACTUATOR		Size	Area	By Mfr	By Mfr	÷		Hydro: Press	ure.	3	
		Air Failure		Close		TESTS		Leakage			
			Location	not required		12	78			3	
		Bench Ra	nge	By Mfr				Manufacture	55	FISHER	1
90 - 103	56	Cold Sugar	Maria 18	UN 33,50% - 12	100	Second and the	-	Model	241	ES	Street
Notes: 1.	Vah	e to be sup	plied fully ass	embled, mark	ked , with	PURCHASE		Purchase On			
08	rtific	ate						Price Ite		ar 3250 \$	3
							83	Serial Numb	aci		
Q 18	3	- 8			5	INSTRUME	NT S	SPECIFICATI	IN JU	1	
8 8	8	- 3			33				_ _	FLIM	DANIE
9) (<u>)</u>	9)	Č.			(9)	Ca	ntrol	Valve	-53	FLUC	R DANIE
(h. 14)	6	1			13				133		
0 MS	11	Date	For bids	Revision	8	Code: 1	_	Dwa No. 1		eet 1	of 1
No. By											Rev.: 0

- Given proper rights the process data may be edited from the Spec Sheets
 - Automatic Unit conversion does NOT work from Spec Sheets
 - Only selected process data is visible on Spec Sheets
 - Rights can be set to prohibit editing of process data from Spec Sheets
 - Multi case process data can be accessed on the Spec Sheet from the process Module
- Editing Process Data From Spec Sheets is NOT Recommended

	7	7 Fluid		Light Naphtha				
	8	Oper. Temperature	Max. Temperature	85	°C	85	°C	
PROCESS	9	Oper. Pressure Max. Pressure Vibrations		12	bar-g	12	bar-g	
CONDITIONS	10							
	11							

- Type and number of Process variables available for Spec Sheets are different for each process function
- Units of Measure (UID) are separated from the variable
- Some Units of Measure are Computed fields
 - Pressure unit of measure psi-g is two fields
 - if (pd_press_uflg = 'G', rightTrim (pd_press_uid) + '-g', if (pd_press_uflg = 'A', rightTrim (pd_press_uid) + '-a', ''))

	9	9 Fluid		pd_fluid_name				
	10	Pressure Max	Oper.	pd_press_max	if (pd_press_uflg	pd_press_nor	if (pd_press_ufl;	
PROCESS	11	Temperature Max.	Oper.	pd_temp_max	pd_temp_uid	pd_temp_nor	pd_temp_uid	
CONDITIONS	12	Oper. Spec. Gravity	Oper, Viscosity	pd_spec_grav_r	nor	pd_visc_nor	pd_visc_uid	
	13 spec_udf_c51		spec_udf_c07					
	14	4 spec_udf_c15		spec_udf_c16				

Different Process variables available for Process Function

Process Fluid	PD_FLUID_NAME
Max. Pressure	PD_PRESS_MAX
Oper. Pressure	PD PRE OR
Max. Temperature 🚬 💋	EQ TEMP_MAX
Oper. Temperature PEN	PD_TEMP_NOR
Temperature Unit Of Measure	PD_TEMP_UID
Process Vibrations	PD_VIBRATION

Different Process variables available for Process Function

	Process Fluid	PD_FLUID_NAME
	Max. Pressure	PD_PRESS_MAX
Process F	Oper. Pressure	PD_PRESS_NOR
Max. Pres	Max. Temperature	PD_TEMP_MAX
Oper, i le	Oper. Temperature	PD TEVENOR
IVIAA. TEIII	Temnerature Unit Of Mere 🕰 🤊	
Oper. Ten	Oper. Viscosity	PD_VISC_NOR
Temperati	Viscosity Unit Of Measure	PD_VISC_UID
Process \	Max. Range	PD_P_RANGE_MAX
	Oper. Spec. Gravity	PD_SPEC_GRAV_NOR
	Calibration Range	PD_P_RANGE_MIN

Different Process variables available for Process Function

FLUOR_®

Different Process variables available for Process Function

		_		
			Flow Full Scale	PD_F_RANGE_MAX
	Í		Max. Flow	PD FLOW MAX
		Reference Leg	Min. Flow	PD FLOW MIN
		Density Upper		PD FLOW NOR
	D	Density Unit O	Process Fluid	PD FLUID NAME
	Process Fl		Process State	PD FLUID PHASE
Process F	Max. Pres	Temperature U	pd_gas_sg_as_mm	PD GAS SG AS MM
	llinor Proc			PD_MOLECULAR_MASS
Onen Des	May Temr	Development according	Base Press.	PD PRESS BASE
	linor iom	Damaitu Init O	Press Unit Of Measure 🛛 🚬 🔿	RESS BASE_UID
max. Tom	Lemperatu	Eluid Lower	Max, Pressure 🛛 🔽 💆 🖊	PD_PRESS_MAX
open. ren	lOner Visc	Designed Pres	Oper. Pressure	PD_PRESS_NOR
Temperati	Viscosity I	Max. Pressure	Spec. Gravity at Base	PD_SPEC_GRAV_BASE
Process \	May Rand	Oper. Pressure	Oper. Gravity at Base	PD_SPEC_GRAV_NOR
	Oper Sper	Reference Line	Base Temp	PD_TEMP_BASE
	Oper. Sper	Max. Temperat	Temp Unit Of Measure	PD_TEMP_BASE_UID
	Calibration			PD_TEMP_MAX
		Oper. Tempera	Oper. Tempreture	PD_TEMP_NOR
		Temperature U	Temperature Unit Of Measure	PD_TEMP_UID
	IND		Viscosity at Operating Conditions	PD_VISC_NOR
FLU	υπ	R	Viscosity Unit Id.	PD_VISC_UID
		•		

Different Process variables available for Process Function

		% Allowable Overpressure	PD_ACCUMULATION
	Flow Full Scale	Conventional, Bellow, Pilot Operated	PD_CALC_CODE
	Max Elow	Compressibility Factor	PD_COMPRES_FLOW_NOR
Reference Leg	Min Flow	Back Pressure Constant	PD_CONST_BACK_PRES
Density Opper	Flow Operating	Ratio of Specific Heats	PD_CP_CV_NOR
Density Unit O	Process Fluid	Relief Density	PD_DENS_RELIEF
Process F Designed Tem	Process State	Dens Relief Unit Id	PD_DENS_RELIEF_UID
Process F Oper Process F	pd_gas_sg_as_m	Process Fluid	PD_FLUID_NAME
		Process State	PD_FLUID_PHASE
Max. Pres Max. Temp Oper. Pres Oper. Temp Density Lower	Base Press.	Latent Heat of Vaporization	PD_LATEN HEAT_NOR
I INEL LETTI Deportu Unit ()	Press Unit Of Me	Latent Heat Unit Id 🛛 🛛 🚽 🥌 🔪	FD_ATENT_HEAT_UID
	UVIAN FIESSUIE	Body and Bonnet	PD_MATERIAL
Oper. Visc Designed Pres	Oper. Pressure	Required Capacity	PD_MAX_DISCHARGE
Viscosity Max. Pressure	Spec. Gravity at t	pd_molecular_mass	PD_MOLECULAR_MASS
Process V Max. Rang Oper. Pressure		Oper. Pressure	PD_PRESS_NOR
Oper. Spei Reference Line	Base Temp	RelievingTemperature	PD_RELIEF_TEMP
Calibration Max. Tempera	Temp Onit Of Mea	Temperature Unit Of Measure	PD_RELIEF_TEMP_UID
Oper. Tempera	iviax. Temperatun	Oper. Temperature	PD_TEMP_NOR
Temperature U	Oper. Tempreture Temperature Unit	Temperature Unit Of Measure	PD_TEMP_UID
	Viscosity at Oper	Process Set Pressure	PD_VAL_SET_PRES_MIN
FLUOR	Viscosity Unit Id.	Back Pressure Variable	PD_VAR_BACK_PRES
	viscosity official	Relief Viscosity	PD_VISC_RELIEF
		Viscosity Relief Unit Id	PD_VISC_RELIEF_UID

Different Process variables available for Process Functi

Reference Leg

Density Upper

Density Unit

Designed Terr

Temperature

Density Lower

Max. Pressur

Oper, Pressu

Reference Lin

Max. Tempera

Oper. Temper

Temperature

Fluid Upper

Process F

Max. Pres

Oper. Pres

Max. Temp

Oper. Tem

Viscosity

Max, Rand

Oper, Spe

Calibration

FLUOR

Temperatu Fluid Lower

Oper. Visc Designed Pre

Process

Max. Pre

Oper, Pre

Max. Terr

Oper. Ter

Temperat

Process

Flow Full Scale

Flow Operating

Process Fluid

Process State

Base Press.

Density Unit O Press Unit Of Me

pd gas sg as m

pd molecular ma

Max. Pressure

Oper. Pressure

Spec. Gravity at

Oper. Gravity at

Femp Unit Of Me

Max. Temperatu

Oper. Tempretur

Temperature Uni Viscosity at Oper

Viscosity Unit Id

Base Temp

Max. Flow

Min. Flow

			and the second	
lle		pd_compres_flow_max	PD_COMPRES_FLOW_MAX	
		pd_compres_flow_min	PD_COMPRES_FLOW_MIN	
		pd_compres_flow_nor	PD_COMPRES_FLOW_NOR	
		pd_cp_cv_max	PD_CP_CV_MAX	
		pd_cp_cv_min	PD_CP_CV_MIN	
		pd_cp_cv_nor	PD_CP_CV_NOR	
		pd_dens_max	PD_DENS_MAX	
		pd_dens_min	PD_DENS_MIN	
		pd_dens_nor	PD_DENS_NOR	
		pd_dens_uld	PD_DENS_VID	
le		Power Failure Position	PD_FAILURE_ACTION	
_		Flow Rate@Max. Flow	PD_FLOW_MAX	
tion		Flow Rate@Min. Flow	PD_FLOW_MIN	
		Flow Rate@Norm. Flow	PD_FLOW_NOR	
		Process Fluid	PD_FLUID_NAME	
		Upstream Condition	PD_FLUID_PHASE	
		Differential Pressure	PD_MAX_SHUT_OFF_PRESS_DIF	
		Pressure Unit Of Measure	PD_MAX_SHUT_015_PRESS_DIF_UID	
% Allowal	ble Overp	pd_molecular_mass	PD_MOLECULAN_MASS	
Conventio	nal, Bello	Pressure Drop@Max, Flow	PD_PRESS_DRP_MAX	
Compress	sibility Fa	Pressure Drop@Min. N.W	PD_PRESS_DRP_MIN	
Back Pres	ssure Co	Pressure Drip@Jorn. Flow	PD_PRESS_DRP_NOR	
Ratio of S	Specific H	Pressure Drop Units	PD_PRESS_DRP_VID	
Relief Der	nsity	Inlet Pressure@Max. Flow	PD_PRESS_MAX	
Dens Reli	ief Unit Id	Inlet Pressure@Min. Flow	PD_PRESS_MIN	
Process F	Fluid	Inlet Pressure@Narm. Flow	PD_PRESS_NOR	
Process S	State	Tightness Requirements	PD_SEAT_LEAK	
Latent He	at of Vap	pd_spec_grav_max	PD_SPEC_GRAV_MAX	
Latent He	at Unit Id	pd_spec_grav_min	PD_SPEC_GRAV_MIN	
		pd_spec_grav_nor	PD_SPEC_GRAV_NOR	
		inlet Temperature@Max. Flow	PD_TEMP_MAX	
		InletTemperature@Min. Flow	PD_TEMP_MIN	
		Inlet Temperature@Norm. Flow	PD_TEMP_NOR	
		Inlet Temperature Units	PD_TEMP_UID	
		In let Vapour Pressure@Max. Flow	PD_VAP_PRESS_MAX	
		Inlet Vapour Pressure@Min. Flow	PD_VAP_PRESS_MIN	
		InletVapour Pressure@Norm. Flow	PD_VAP_PRESS_NOR	
		inlet Viscosity@Nax. Flow	PD_VISC_MAX	
		InletViscosity@Nin. Flaw	PD_VISC_MIN	
		InletViscosity@Norm. Flow	PD_VISC_NOR	
Viscosity	Relief Ur	Inlet Viscosity Units	PD_VISC_UID	

25

Supplemented with Computed and **Process Function Fields**

Flow Rate Units Inlet Pressure Units

No. of Ports

Body Size

Body Type

FLUOR

Inlet Vapour Pressure Units

Travel@Max. Flow 🦰 🔘 Travel@Min. Flow

Size Unit Of Measure

Travel@Norm. 🗛 🔥 🗧

Flow Coefficient Cv@Max. Flow

Flow Coefficient Cv@Min. Flow

Flow Coefficient Cv@Norm. Flow

Sound Pressure Level@Max. Flow

Sound Pressure Level@Min. Flow Sound Pressure Level@Norm, Flw

	pu_compres_now_max			
oaule	pd_compres_flow_min	PD_COMPRES_FLOW_MIN		
	pd_compres_flow_nor	PD_COMPRES_FLOW_NOR		
	pd_cp_cv_max	PD_CP_CV_MAX		
	pd_cp_cv_min	PD_CP_CV_MIN		
	pd_cp_cv_nor	PD_CP_CV_NOR		
1 141	pd_dens_max	PD_DENS_MAX		
d with	pd_dens_min	PD_DENS_MIN		
	pd_dens_nor	PD_DENS_NOR		
	pd_dens_uld	PD_DENS_UID		
d	Power Failure Position	PD_FAILURE_ACTION		
	Flow Rate@Max. Flow	PD_FLOW_MAX		
ction	Flow Rate@Min. Flow	PD_FLOW_MIN		
	Flow Rate@Norm. Flow	PD_FLOW_NOR		
	Process Fluid	PD_FLUID_NAME		
	Upstream Condition	PD_FLUID_PHASE		
	Differential Pressure	PD_MAX_SHUT_OFF_PRESS_DIF		
	Pressure Unit Of Measure	PD_MAX_SHUT_012_PRESS_DIF_UID		
	od_molecular_mass	PD_MOLEC VLAN_MASS		
COMP_FLOW_UOM	ssure Drop@Max Flow	PD_FRESS_DRP_MAX		
COMP_PRESS_UOM	ssure Drop@Mip.T.W	PD_PRESS_DRP_MIN		
COMP_VAP_PRESS_UOM	ssure Dri p@ Jonn. Flow	PD_PRESS_DRP_NOR		
CV_NUM_PASSAGES	ssure Drop Units	PD_PRESS_DRP_VID		
	t Pressure@Max. Flow	PD_PRESS_MAX		
CV BOOND LVL MIN	t Pressure@Min. Flow	PD_PRESS_NIN		
CV TRAVILLMAX	t Pressure@Narm. Flow	PD_PRESS_NOR		
	htness Requirements	PD_SEAT_LEAK		
CV TRAVEL NOR	spec_grav_max	PD_SPEC_ORAV_MAX		
CV_VALVE_DIAM	spec_grav_min	PD_SPEC_GRAV_MIN		
CV VALVE DIAM UID	spec_grav_nor	PD_SPEC_GRAV_NOR		
CV VALVE TYPE	t Temperature@Max. Flow	PD_TEMP_MAX		
CV VLV CV MAX	t Temperature@Min. Flow	PD_TEMP_MIN		
CV VLV CV MIN	t Temperature@Norm. Flow	PD_TEMP_NOR		
CV VLV CV NOR	t Temperature Units	PD_TEMP_VID		
	met Vapour Pressure@Max. Flow	PD_VAP_PRESS_MAX		
	Inlet Vapour Pressure@Min. Flow	PD_VAP_PRESS_MIN		
	Inlet Vapour Pressure@Norm. Flow	PD_VAP_PRESS_NOR		
	Inlet Viscosity@Nax. Flow	PD_VISC_MAX		
	InletViscosity@Min. Flaw	PD_VISC_MIN		
	Inlet Viscosity@Norm. Flow	PD_VISC_NOR		
	Inlet Viscosity Units	PD_VISC_UID		

26

PD COMPRES FLOW MAX

pd compres flow max

Instrument Calculation Module

- Control Valve Sizing
- Relief Valve Sizing
- Flow Meter Sizing

FLUOR

- Thermowell Parameters
- Uses excepted standard formulas
- Documents calculation basis
- Direct access to Process Data
- Generates Calculation Reports with Revisions

_									
		101-FV -100							
		Feed from V-8							
		CONTROL VALVE: Cv Calculation							
	т	The Control Value is sized according to ISA-75.01 (1995)							
				2	ionellan OZ 3000E (1	080			
				raccolung to max	solelial oz sobe (i	304)			
		tate: LKQUID lukt: Lean Fe							
	FI	itki: Leat Fe	ea						
				Ustt	@ Mh. Flow	@ Normal Flow	@ Max. Flow		
		kw		m*A	25	30	32		
		Upstream pressure Downstream pressure		bar-g	12	13	14		
		Downstream pressure Differential pressure Temperature Specific gravity Viscosity Vapour pressure		bar-g bar	4	7	11 3		
				°C	° 150	150	150		
				-0	0.890	0.890	0.890		
				сP	0.1	0.1	0.1		
				bar-g	0.9	0.9	0.9		
	⊢	<u> </u>		-		1200			
	0	Critical pressure bar-g		tai-g		1200			
	P I Va	Pipe inletiontiet diameter / Wall thickness Value diameter		th, sch80 3826 / 3826 / 0.337 h 2 ShgleGlobe h ShgleGlobe					
	R	esults and Co	efficients		@ Mit. Flow	@ Normal Flow	@ Max. Flow		
		aiculated Cu		(C1)	9.68 13.5		20.4		
		low regime or			helpTurb.	Turbulent	Turbulent		
		ane Reynokis		(Re)	5866731	5980334	5193193		
		eynolds numb		(F1)	1 0.936	1	12		
		utiet pipe velo Voirodynamich		[m./s] (:16.A)	77.9	1.12	65.1		
				Freed					
		ressure recou		(FI)	0.86	0.86	0.86		
		ressure recou	erynactor	(FID)	0.8575	0.8552	0.8491		
	I P	Piblic deometry tactor							
	- ×			(Fp)	0.9974	0.995	0.9886		
		ritical press I	re tactor	(F1)	0.9974 0.9488	0.995 0.9488	0.9488		
	c	ritical press u avitation index	re tactor	(F1) (HC)	0.9974 0.9488 0.7207	0.995 0.9488 0.4959	0.9488 0.229		
	C Vi	ritical press un autation Index alue caultation	re factor Index	(F1) (HC) (HC4)	0.9974 0.9488	0.995 0.9488	0.9488		
	C VA M	ritical pressu autration Index alte caultation lax. allow. diff.	re factor (Index pressure	(F1) (H2) (H20) [bal]	0.9974 0.9488 0.7207 0.5536	0.995 0.9488 0.4959 0.5536 9.012	0.9488 0.229 0.5536		
	C V M V	ritical press of autation Index alte cauitation lax, allow, diff, alte style mod	refactor Index pressure	(F1) (H2) (H20) [ba1] (F0)	0.9974 0.9488 0.7207 0.5536	0.995 0.9488 0.4959 0.5635	0.9488 0.229 0.5536		
	C VS M VS h	ritical pressu autration Index alte caultation lax. allow. diff.	re factor Index pressure Mer cefficient	(F1) (H2) (H20) [bal]	0.9974 0.9488 0.7207 0.5536	0.995 0.9488 0.4959 0.5636 9.012 1	0.9488 0.229 0.5536		
	C V M V I T	ritical press () avitation Index alte cavitation lax, allow, diff, alte style mod let vel, head o lotal vel, head o	re factor Index pressure Mer cefficient	(F1 (40) (40) [34] (F0) (50) (51)	0.9974 0.9488 0.7207 0.5536	0.995 0.9488 0.4959 0.5635 9.012 1 1.189	0.9488 0.229 0.5536		
	C V M V I T	ritical press () avitation Index alte cavitation lax, allow, diff, alte style mod let vel, head o lotal vel, head o	re factor t Index pressure Mer cefficient coefficient	(F1 (40) (40) [34] (F0) (50) (51)	0.9674 0.9488 0.7207 0.9636 8.277 0.9636	0.995 0.995 0.4959 0.9536 0.9536 0.9536 1 1.189 0.7922	0.9488 0.229 0.5535 9.737		
	C V M V I I T	ritical press () avitation Index alte cavitation lax, allow, diff, alte style mod let vel, head o lotal vel, head o	re factor t Index pressure Mer cefficient coefficient	(F1 (40) (40) [34] (F0) (50) (51)	0.9474 0.9488 0.7207 0.9536 8.277	0.995 0.4959 0.4959 0.5535 9.012 1 1.189 0.7922 ALVE SIZINC	0.5239 0.5536 9.737		
	C V M M V h T	ritical press () avitation Index alte cavitation lax, allow, diff, alte style mod let vel, head o lotal vel, head o	re factor t Index pressure Mer cefficient coefficient	(F1 (40) (40) [34] (F0) (50) (51)	0.9674 0.9488 0.7207 0.9636 8.277 0.9636	0.995 0.4959 0.4959 0.5535 9.012 1 1.189 0.7922 ALVE SIZINC	0.9488 0.229 0.5535 9.737		
	C V M V I I T	ritical press () avitation Index alte cavitation lax, allow, diff, alte style mod let vel, head o lotal vel, head o	re tactor Index Index pressure Mer coefficient coefficient coefficient ressure: 1.00 aftin For piping	(F1 (40) (40) [34] (F0) (50) (51)	0.9674 0.9488 0.7207 0.9636 8.277 0.9636	0.965 0.4959 0.4959 0.05036 9.012 1 1.189 0.7922	0.5239 0.5536 9.737		

Process Data Issues

- Types of Process Data
 - Process Design Conditions
 - Process Operating Conditions
 - Process Ranges
 - Process Alarms and Trips
- Process Workflow needs to be different for Inline vs. Offline Devices
- Process Data Workflow may be circumvented using Process and Spec Browsers
- Process notes often required on Spec Sheet (create spec sheet notes page for Inline devices)
- Smart Instrumentation may need the Process Data to be defined on both Inline and Offline instruments
- Getting Process Group to use SPI for data entry can be a challenge

Process Data in SmartPlant Instrumentation

- Value Added by placing Process
 Data directly into SmartPlant
 Instrumentation:
 - Timely Access to Process Data by Control Systems
 - Data Centric Control of Process
 Data
 - Management of Change
 - Real Process Data Becomes Deliverable
- Alternative is to use the External Process Data Editor

				GENERAL			
Case name:	Case	1					
Tag number:	101-F	E -100					
Service:	Feed	from V-8		Location:		Line	
Fluid state:	Liquk			Line numbe	r:	4"-P-1501-11	н
Fluid phase:		e phase		Line size:		4 in	
Fluid name:	Lean	Feed		Line schedu	ule:	80	
			1	PROPERTIES			
		@Minimum	@Normal	@Maximum	Units		
Volumetric flo		25	30	32	m ³ h@flow		
Upstream prei	ssure:	12	13	14	bar-q		
Temperature:		0.1	0.1	0.1	°C cP		
Viscosity:			1.12	1.2			
Velocity: Density:		0.936 890	890	890	m/s kg/m³		
Specific gravi	tv:	0.891	0.891	0.891	Marin		
Compressibilit		2.921	2.921				
Vapour press		0.9	0.9	0.9	bar-o		
Critical pressu		1200			bar-q		
				ONAL PROPERTIES	,		
Design pressu	ire min:		bar-g	URAL PROPERTIES	,	Corrosive:	No
Design pressu		50	bar-g			Erosive:	No
Design temper			°C			Toxic:	No
Design temper		250	°C			Colored:	
Entrained gas			%			Transparent:	
Required rang	e:	From: 0	To: 35		@flow	Bulld-up tend	
	s.drop across	flowmeter:	mmH2	0.4°C		Angle of rep	ose:
Check Out							
				SE CONDITIONS			
Pressure:		1	bar-a	Dens	the		kg/m²
		15.5	0al-a				NQ/III*
Temperature:		10.0	-0		pressibility:		
				CON	preceipinty.		
				ALARM			
		Alarm	qhT	ADDIV			
Low-Low-Lo	W:			Eng	ineering units:	m³	/h@flow
Low-Low:							
Low:							
High:							
High-High:							
High-High-High							
Shutdown Cor	de						
			API 2	2540 STANDARD			
			USE	R DEFINED FIELD			
				NOTE			
				NOTE			
				NOTE			
				NOTE	ELCIW.		
				_	FLOW	, IN	ITERGRAPH
				PROCES	SS DATA SHEE		ITERGRAP
				_	SS DATA SHEE		
D MS No. By	11/19/1998 Date	For Instrumentatio	n	PROCES Domain: DEMO	SS DATA SHEE	Pro V2004 Sheet	cess · Power · Offsho

Process Data in SmartPlant Instrumentation

Best Practice

Enter Process Data directly into SmartPlant Instrumentation

Questions?

